A reproducible, comparative study of data article citations in Neuroscience and Molecular Biology (Supplementary material for "Data publications correlate with citation impact")

Florian Leitner, Concha Bielza, Sean Hill, and Pedro Larrañaga Summer 2015

Contents

Introduction	1
Study overview	1
Settings and data	2
Field-specific citation distributions	14
Article citation distributions	14
Citation count comparisons	14
Author-specific citation distributions	19
A data article citation index	19
Data author comparisons	24
An online DAC-index	28
References	30

Introduction

Study overview

This analysis compares various citation count samples of PubMed citations available from the Thomson Reuters ISI Web of Knowledge (WoK). The analysis is split in two main categories (fields): articles from the field of **Neuroscience** (**NS**) and articles from **Molecular Biology** (**MB**; all articles combined with Life Sciences, but excluding the overlap with Neuroscience articles). Note that there still could be remaining articles for both fields in the general Thomson Reuters database and that are not part of PubMed. However, in the general in the biomedical field, only publications indexed by PubMed are universally acknowledged by all scientific institutions.

For both fields, citation counts for the whole set of data articles and a random sample with an equal distribution of publication years as in the data articles were collected, as well as 20 (ten per field) sets of author-specific articles. Details of how these sets were selected will be explained in Settings and data. The fundamental statistical issues that are addressed by this work are:

- 1. Is there a measurable effect on an article's total citation count when it is a data (i.e., atlas or database) publication? Specifically, is there a statistically significant difference between the distribution of data articles and an equally sized random article sample (of non-data articles, but covering the same number of articles per year)?
- 2. For any differences we find, can those differences be quantified?
- 3. Furthermore, who are the most prolific data publishing scientists in their respective fields?
- 4. And does such an author's data article citation counts significantly diverge from her or his non-data article citation counts?

To address the first two questions, we perform the following analyses: A statistical test establishes if data citations arise from the same distribution as a set of random article citations of the same size in each field. In particular, we establish if the data article citation distributions have a significant shift to the right (are "greater than", i.e., using a one-sided test) when compared to their respective random "baselines". The empirical **Cumulative Distribution Functions (CDFs)** of the data and random article citation distributions are plotted and manually inspected to establish the magnitude of any differences. The probability difference of reaching the field's median citation count and the citation count difference for the top 10% most cited articles (the top decile) between data and random sets are used to quantify those differences. All this will be addressed in the Field-specific citation distributions section.

The last section, Author-specific citation distributions, addresses the remaining two questions. A ranking of the most prolific data-publishing Neuroscience and Molecular Biology scientists is established by defining a data article citation index (DAC-index). For reasons explained below, this DAC-index is defined as the sum of logs of an author's data citations. Finally, for the top ten data-publishing authors (according to that DAC-index) we apply a statistical test to evaluate if their data articles received significantly more citations than their other (non-data) articles. Their median data and other article citation counts are calculated to quantify this difference.

Settings and data

\mathbf{R} setup

```
library(dplyr, warn.conflicts=F) # var. data manipulation functions, sample_n
library(readr) # data import
set.seed(17)
par(mfrow=c(1,1))
```

Data article selection

The selection of data articles are citations with specific PubMed **Medical Subject Heading (MeSH)** terms, either for databases or atlases (see below). (Note that the intuitively also relevant-seeming MeSH term "Data Collection" is used to tag works *about* data collection, not data collections per se.) There are at least four reasons that favor a MeSH-based approach:

- 1. A MeSH-based selection represents a robust methodological basis for selecting articles that contain or present data sets, as MeSH assignments are expert curated.
- 2. This selection strategy is based on an objective source as opposed to a necessarily biased list of articles by a meta-repository, e.g. the Neuroscience Information Framework¹.
- 3. The approach minimizes any ambiguity in reproducing our findings (e.g., if we had used a statistical article classifier instead), as only an additional curation effort by the **National Library of Medicine** (**NLM**) can introduce (explainable) changes in the datasets.

¹It might be worthy to mention that for any such alternative strategy, all citation lists were substantially shorter than the MeSH-based list.

4. The strategy can be repeated easily in the future – to be precise, as long as PubMed carries out its PubMed MeSH curation, an endeavor which the NLM has been engaged with for several decades now.

For example, articles tagged with "Databases, Factual" are articles that must refer to "extensive collections, reputedly complete, of facts and data garnered from material of a specialized subject area and made available for analysis and application." We explored the use of a number of other MeSH terms as well, e.g., Magnetic Resonance Imaging, but selecting articles with any other term produces substantial numbers of articles that do not publish data, as their definitions do not require the presence of data and articles might just discuss MRI techniques. However, while we could not identify further MeSH terms that could serve as indicators of data articles, this cannot be a claim that our list is exhaustive. Note that we have purposefully excluded "Databases, Bibliographic" from the Databases terms, as that MeSH term covers works that are not necessarily data-related, but rather reference other scientifc works.

Article queries were ran against Thomson Reuter's ISI WoK, limiting the retrieval to the years 1950 to 2013 (inclusive), and using the following expressions to produce the stated result sizes:

```
## Data articles selection
1: MH=(Databases, Chemical OR
       Databases, Factual OR
       Databases, Genetic OR
       Databases, Nucleic Acid OR
       Databases, Pharmaceutical OR
       Databases, Protein OR
       Atlases as Topic)
#> 66K data articles
## Neuroscience article selection
2: SU=(Neurosciences & Neurology)
#> 2.545M NS articles
## Molecular Biology article selection
3: SU=((Biochemistry & Molecular Biology OR
        Life Sciences & Biomedicine) NOT
      Neurosciences & Neurology)
#> 6.493M MB articles
## Neuroscience data article selection
4: #1 AND #2
#> 4,575 NS data articles
## Molecular Biology data article selection
5: #1 AND #3
#> 30,612 MB data articles
```

The random articles are selected by limiting the query to randomly selected PubMed IDs proportional to the number of data article citations for each year and category (NS, MB). For example, if there are 200 NS data articles for some year, 1000 random PubMed IDs for the same year are randomly sampled from our local PubMed database and the corresponding NS citations downloaded. This convoluted procedure is required because our local PubMed mirror (from the NLM) does not contain the subject field assignments of the Thomson Reuter's WoK (to MB and/or NS). In other words, we first select far more random PubMed IDs than necessary to cover a given year but then download only those articles that are assigned to the relevant field

For the nature of this study, it is noteworthy that the random sets can include (randomly selected) data articles by chance. This is required to allow us to quantify the average citation impact of data articles relative

to the average citation impact of the entire field. Therefore, the random samples are made over the whole set of articles in the field and may contain data articles as well. (And indeed, if the respective two sets we provide are compared, tiny overlaps between the data and random article sets can be found.)

As will be shown, from the set of data articles in each field we then establish a ranking of the most prolific data-publishing authors by defining a DAC-index. Therefore, **author articles** for each of the top ten data-publishing authors (established by that DAC-index) are selected by querying for the respective author name. These queries rely on the WoK advanced query field AU and use both an author's abbreviated and full name. All articles that intersect with the relevant field-specific set for that author (i.e., either NS or MB) are downloaded.

Neuroscience citations

The resulting data and a random article set and the ten author-specific article sets have the following statistical descriptors.

```
TC - times cited (citation count)
PY - publication year
PM - PubMed ID<sup>2</sup>
```

• AU - author names

```
NS.data <- read_tsv('neurosci.data.tsv')</pre>
```

```
## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )
```

summary(NS.data)

```
PΥ
                                              PM
##
           TC
                                                                  AU
##
    Min.
                0.00
                       Min.
                               :1964
                                        Min.
                                               : 357457
                                                            Length: 4575
                2.00
##
    1st Qu.:
                       1st Qu.:2005
                                        1st Qu.:16328768
                                                            Class : character
##
    Median:
                8.00
                       Median:2009
                                        Median :19834022
                                                            Mode :character
##
    Mean
               23.11
                       Mean
                               :2008
                                        Mean
                                               :18648030
##
    3rd Qu.:
               22.00
                       3rd Qu.:2012
                                        3rd Qu.:22243704
##
    Max.
            :2619.00
                       Max.
                               :2013
                                               :24600800
```

```
NS.rnd <- read_tsv('neurosci.random.tsv')</pre>
```

```
## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )
```

²N.B. despite summarized here as a discrete variable here, that has no impact on the study.

```
summary(NS.rnd)
                           PΥ
                                                           AU
##
         TC
                                          PM
##
   Min.
              0.00
                     Min.
                           :1964
                                    Min.
                                         : 125556
                                                      Length:7304
                                    1st Qu.:16924483
  1st Qu.:
              1.00
                     1st Qu.:2006
                                                      Class : character
## Median :
              6.00
                     Median:2009
                                    Median :19782472
                                                      Mode : character
## Mean : 16.93
                     Mean :2008
                                         :18749723
                                    Mean
## 3rd Qu.: 17.00
                     3rd Qu.:2012
                                    3rd Qu.:22235782
                     Max. :2013
## Max. :1023.00
                                    Max. :24941716
NS.aut <- list(Butcher=read_tsv('neurosci.butcher.tsv'))</pre>
## Parsed with column specification:
## cols(
##
    TC = col_integer(),
    PY = col_integer(),
##
##
    PM = col_integer(),
##
   AU = col_character()
## )
summary(NS.aut[["Butcher"]])
         TC
                          PΥ
                                         PM
                                                          ΑU
                                   Min. : 2951184
## Min. : 3.00
                                                      Length:26
                          :1986
                    Min.
## 1st Qu.: 12.75
                    1st Qu.:2007
                                   1st Qu.:17375992
                                                      Class : character
## Median : 34.50
                    Median:2008
                                   Median :18631321
                                                      Mode : character
                          :2008
## Mean : 55.15
                    Mean
                                   Mean
                                        :18692641
                                   3rd Qu.:21032852
## 3rd Qu.: 80.00
                    3rd Qu.:2011
## Max. :218.00
                    Max.
                          :2013
                                   Max.
                                         :24139680
NS.aut[["DeVivo"]] <- read tsv('neurosci.devivo.tsv')</pre>
## Parsed with column specification:
## cols(
##
    TC = col integer(),
    PY = col_integer(),
##
    PM = col_integer(),
##
    AU = col_character()
## )
summary(NS.aut[["DeVivo"]])
                          PΥ
                                         PM
                                                          AU
##
         TC
## Min. : 0.00
                    Min.
                           :1979
                                   Min.
                                        : 492764
                                                     Length:99
## 1st Qu.: 12.00
                    1st Qu.:1992
                                   1st Qu.: 7255136
                                                      Class : character
                    Median:1999
## Median : 26.00
                                   Median :10569446
                                                     Mode :character
                                   Mean :10715413
## Mean : 43.03
                    Mean :1998
## 3rd Qu.: 56.00
                    3rd Qu.:2004
                                   3rd Qu.:15512332
## Max. :352.00
                    Max. :2012
                                   Max.
                                         :23100450
```

```
NS.aut[["Lu"]] <- read_tsv('neurosci.lu.tsv')</pre>
## Parsed with column specification:
## cols(
##
    TC = col_integer(),
    PY = col_integer(),
    PM = col_integer(),
##
##
    AU = col_character()
## )
summary(NS.aut[["Lu"]])
##
         TC
                         PΥ
                                        PM
                                                          AU
## Min.
         : 0.0
                          :1989
                                         : 1325239
                                                     Length: 181
                   Min.
                                  Min.
## 1st Qu.: 6.0
                   1st Qu.:1998
                                  1st Qu.: 9657549
                                                     Class : character
## Median : 16.0
                   Median :2002
                                  Median :12421340
                                                     Mode :character
## Mean
         : 39.5
                   Mean
                          :2003
                                  Mean
                                         :13953887
## 3rd Qu.: 44.0
                   3rd Qu.:2009
                                  3rd Qu.:19118603
## Max.
          :377.0 Max.
                          :2013 Max.
                                         :24391036
NS.aut[["Maas"]] <- read_tsv('neurosci.maas.tsv')</pre>
## Parsed with column specification:
## cols(
##
    TC = col_integer(),
    PY = col_integer(),
##
   PM = col_integer(),
   AU = col_character()
##
## )
summary(NS.aut[["Maas"]])
                          PΥ
         TC
                                         PM
                                                           AU
##
## Min.
         : 0.00
                    Min.
                           :2002
                                   Min.
                                          :11787492
                                                      Length:86
## 1st Qu.: 9.00
                    1st Qu.:2006
                                   1st Qu.:16441528
                                                      Class : character
## Median : 24.50
                    Median:2008
                                   Median :18402754
                                                      Mode : character
## Mean : 46.72
                    Mean
                          :2008
                                   Mean
                                         :18673923
## 3rd Qu.: 63.25
                    3rd Qu.:2011
                                   3rd Qu.:21274122
         :320.00
                           :2013
                                          :24139680
## Max.
                    Max.
                                   Max.
NS.aut[["McHugh"]] <- read_tsv('neurosci.mchugh.tsv')</pre>
## Parsed with column specification:
## cols(
    TC = col_integer(),
##
##
    PY = col_integer(),
   PM = col integer(),
##
    AU = col_character()
## )
```

```
summary(NS.aut[["McHugh"]])
                          PY
                                                          AU
##
         TC
                                         PM
## Min.
         : 4.00
                    Min.
                          :2007
                                   Min.
                                         :17375988
                                                     Length:21
## 1st Qu.: 25.00
                    1st Qu.:2007
                                   1st Qu.:17375993
                                                     Class : character
## Median : 44.00
                    Median:2008
                                   Median :18578634
                                                     Mode : character
## Mean : 64.86
                    Mean :2009
                                   Mean :19199758
## 3rd Qu.: 84.00 3rd Qu.:2010
                                   3rd Qu.:20156956
## Max. :218.00 Max. :2013
                                   Max. :24139680
NS.aut[["Marmarou"]] <- read_tsv('neurosci.marmarou.tsv')</pre>
## Parsed with column specification:
## cols(
    TC = col_integer(),
##
##
    PY = col_integer(),
   PM = col_integer(),
   AU = col_character()
##
## )
summary(NS.aut[["Mermarou"]])
## Length Class
                  Mode
##
                  NULL
       0
           NULL
NS.aut[["Murray"]] <- read_tsv('neurosci.murray.tsv')</pre>
## Parsed with column specification:
## cols(
    TC = col_integer(),
##
##
    PY = col_integer(),
##
   PM = col_integer(),
##
   AU = col_character()
## )
summary(NS.aut[["Murray"]])
##
         TC
                           PY
                                          PM
                                                           AU
              0.00 Min.
## Min. :
                          :1983
                                   Min.
                                         : 2037083
                                                      Length:99
## 1st Qu.: 13.50
                    1st Qu.:1999
                                    1st Qu.:10623064
                                                      Class : character
## Median : 38.00
                     Median :2006
                                   Median :16958582
                                                      Mode :character
## Mean
         : 84.48
                     Mean
                          :2003
                                    Mean
                                          :15002249
## 3rd Qu.: 85.00
                     3rd Qu.:2010
                                    3rd Qu.:20298196
## Max.
         :1759.00
                     Max. :2013
                                   Max.
                                         :24139680
NS.aut[["Steyerb."]] <- read_tsv('neurosci.steyerberg.tsv')</pre>
## Parsed with column specification:
## cols(
```

```
##
    TC = col_integer(),
##
    PY = col_integer(),
    PM = col_integer(),
##
    AU = col_character()
##
## )
summary(NS.aut[["Steyerb."]])
                           PΥ
                                                            AU
##
          TC
                                          PM
         : 0.00
##
                                          : 7489218
                                                       Length: 101
  Min.
                     Min.
                            :1994
                                    Min.
   1st Qu.: 10.00
                     1st Qu.:2004
                                    1st Qu.:15335110
                                                       Class : character
## Median : 23.00
                     Median:2007
                                    Median :17634755
                                                       Mode :character
                           :2007
## Mean
         : 39.09
                     Mean
                                    Mean
                                           :17283688
                     3rd Qu.:2010
## 3rd Qu.: 52.00
                                    3rd Qu.:20814011
## Max.
          :223.00
                     Max.
                            :2013
                                    Max.
                                           :24139680
NS.aut[["Toga"]] <- read_tsv('neurosci.toga.tsv')</pre>
## Parsed with column specification:
## cols(
##
    TC = col_integer(),
    PY = col_integer(),
    PM = col_integer(),
##
    AU = col_character()
## )
summary(NS.aut[["Toga"]])
##
          TC
                            PΥ
                                           PM
                                                              AU
##
  Min.
         :
               0.00
                           :1979
                                           : 469960
                                                        Length:553
                      Min.
  1st Qu.:
                      1st Qu.:2004
                                     1st Qu.:15261329
              10.00
                                                         Class : character
## Median : 29.00
                      Median :2008
                                     Median :18512163
                                                        Mode :character
## Mean
          : 58.39
                      Mean :2007
                                           :17448806
## 3rd Qu.:
              60.00
                      3rd Qu.:2011
                                     3rd Qu.:21304146
## Max.
          :1637.00
                      Max.
                             :2013
                                     Max.
                                            :24683973
NS.aut[["Van Essen"]] <- read_tsv('neurosci.van_essen.tsv')</pre>
## Parsed with column specification:
## cols(
##
     TC = col_integer(),
    PY = col_integer(),
    PM = col_integer(),
    AU = col_character()
##
## )
summary(NS.aut[["Van Essen"]])
          TC
                            PY
                                                              AU
## Min.
               0.00
                           :1973
                                            : 120129
                                                       Length: 140
                     Min.
                                     Min.
```

```
1st Qu.:
              25.75
                       1st Qu.:1990
                                       1st Qu.: 6531636
                                                           Class : character
##
                       Median:1999
                                                           Mode : character
    Median :
              65.00
                                       Median :10797508
    Mean
           : 183.24
                       Mean
                               :1998
                                       Mean
                                               :11888799
    3rd Qu.: 198.75
                       3rd Qu.:2007
                                       3rd Qu.:18094724
##
    Max.
           :3281.00
                       Max.
                               :2013
                                       Max.
                                               :24683992
```

Molecular Biology citations

Molecular Biology (MB) articles include Life Science, but exclude Neuroscience (NS) articles. The resulting data and a random article set and the ten author-specific article sets have the following statistical descriptors (particularly, publication years and citation counts are of interest).

```
 TC - times cited (citation count) PY - publication year
```

- $PM PubMed ID^3$
- AU author names

```
MB.data <- read_tsv('molbio.data.tsv')</pre>
```

```
## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )
```

```
summary(MB.data)
```

```
TC
                               PY
                                                PM
                                                                   AU
##
##
    Min.
                 0.00
                         Min.
                                :1975
                                         Min.
                                                 : 1194384
                                                              Length: 30612
    1st Qu.:
                 3.00
                         1st Qu.:2003
                                         1st Qu.:14527528
                                                              Class : character
    Median :
                12.00
                         Median:2007
                                         Median: 17885655
                                                              Mode :character
##
##
    Mean
                44.06
                         Mean
                                 :2006
                                         Mean
                                                 :17116994
                34.00
                                         3rd Qu.:20952426
##
    3rd Qu.:
                         3rd Qu.:2010
##
    Max.
            :38693.00
                         Max.
                                :2013
                                         Max.
                                                 :25145244
```

```
MB.rnd <- read_tsv('molbio.random.tsv')</pre>
```

```
## Parsed with column specification:
## cols(
## TC = col_integer(),
## PY = col_integer(),
## PM = col_integer(),
## AU = col_character()
## )
```

 $^{^3}$ N.B. despite summarized here as a discrete variable here, that has no impact on the study.

```
summary(MB.rnd)
                          PΥ
                                                          AU
##
         TC
                                        PM
   Min.
         :
              0.0
                   Min.
                         :1966
                                  Min.
                                        : 1280702
                                                     Length: 34996
  1st Qu.:
              3.0
                    1st Qu.:2003
                                  1st Qu.:14578001
                                                     Class : character
## Median: 11.0
                    Median:2007
                                  Median :17637019
                                                     Mode : character
## Mean : 26.2
                    Mean :2006
                                  Mean :17054880
## 3rd Qu.: 27.0
                    3rd Qu.:2010
                                  3rd Qu.:20853271
                    Max. :2013
## Max. :2743.0
                                  Max. :24712276
MB.aut <- list(Appel=read_tsv('molbio.appel.tsv'))</pre>
## Parsed with column specification:
## cols(
    TC = col_integer(),
##
##
    PY = col_integer(),
##
   PM = col_integer(),
   AU = col character()
## )
summary(MB.aut[["Appel"]])
         TC
                          PΥ
                                         PM
                                                           AU
                     Min. :1988
                                   Min. : 1802690
                                                      Length:78
## Min. :
             0.00
## 1st Qu.: 16.50
                    1st Qu.:1996
                                   1st Qu.: 8998564
                                                      Class : character
                    Median:1999
                                   Median :10602264
## Median : 33.50
                                                      Mode :character
## Mean : 85.68
                     Mean :2000
                                   Mean :11700010
## 3rd Qu.: 86.75
                     3rd Qu.:2004
                                   3rd Qu.:15249126
## Max. :1373.00
                     Max. :2009
                                   Max. :19391179
MB.aut[["Bairoch"]] <- read_tsv('molbio.bairoch.tsv')</pre>
## Parsed with column specification:
## cols(
##
    TC = col integer(),
##
    PY = col_integer(),
   PM = col_integer(),
##
    AU = col_character()
## )
summary(MB.aut[["Bairoch"]])
                          PΥ
                                        PM
                                                          AU
##
         TC
## Min. :
              0.0
                    Min.
                          :1982
                                  Min. : 1286669
                                                     Length: 157
## 1st Qu.: 26.0
                    1st Qu.:1995
                                  1st Qu.: 8506147
                                                     Class : character
                    Median:1999
## Median : 77.0
                                  Median :10356335
                                                     Mode :character
                    Mean :2000
## Mean : 187.9
                                  Mean :11637757
## 3rd Qu.: 226.0
                    3rd Qu.:2004
                                  3rd Qu.:15608167
## Max. :1670.0
                   Max. :2013
                                  Max.
                                        :23353650
```

```
MB.aut[["Dunker"]] <- read_tsv('molbio.dunker.tsv')</pre>
## Parsed with column specification:
## cols(
##
     TC = col_integer(),
##
     PY = col_integer(),
    PM = col_integer(),
##
##
     AU = col_character()
## )
summary(MB.aut[["Dunker"]])
##
          TC
                           PY
                                          PM
                                                             AU
## Min.
         : 0.00
                     Min.
                           :1969
                                    Min.
                                          :
                                               36395
                                                        Length: 178
## 1st Qu.: 12.25
                     1st Qu.:1999
                                    1st Qu.:10681844
                                                        Class : character
## Median : 40.00
                     Median:2006
                                    Median :16667782
                                                        Mode : character
## Mean : 95.33
                     Mean
                           :2001
                                    Mean
                                           :14591739
## 3rd Qu.: 94.00
                     3rd Qu.:2009
                                    3rd Qu.:19592405
## Max.
          :986.00
                            :2013
                                           :23758675
                     Max.
                                    Max.
MB.aut[["Durbin"]] <- read_tsv('molbio.durbin.tsv')</pre>
## Parsed with column specification:
## cols(
     TC = col_integer(),
##
##
    PY = col_integer(),
    PM = col integer(),
    AU = col_character()
##
## )
summary(MB.aut[["Durbin"]])
                             PΥ
                                            PM
                                                               AU
##
          TC
                                             : 1302004
## Min.
          :
               0.00
                       Min.
                              :1960
                                                         Length: 108
                                      Min.
  1st Qu.:
               29.75
                       1st Qu.:1998
                                      1st Qu.:10571391
                                                          Class : character
                                                         Mode :character
## Median:
               98.00
                       Median:2004
                                      Median :14911374
## Mean
          : 362.29
                       Mean
                              :2002
                                      Mean
                                             :14574111
   3rd Qu.: 243.75
                       3rd Qu.:2008
                                      3rd Qu.:18998185
##
   Max.
           :11214.00
                       Max.
                              :2013
                                      Max.
                                             :24104757
MB.aut[["Hochstr."]] <- read_tsv('molbio.hochstrasser.tsv')</pre>
## Parsed with column specification:
## cols(
     TC = col_integer(),
##
##
    PY = col_integer(),
    PM = col integer(),
##
     AU = col_character()
## )
```

```
summary(MB.aut[["Hochstr."]])
         TC
                          PΥ
                                                           AU
##
                                         PM
##
   Min.
         : 0.00
                    Min.
                          :1988
                                   Min.
                                         : 1281090
                                                      Length: 192
  1st Qu.: 11.00
                    1st Qu.:1996
                                   1st Qu.: 8906833
                                                      Class : character
## Median : 25.00
                    Median:1999
                                   Median :10610496
                                                      Mode : character
## Mean : 58.62
                          :2001
                                          :12290706
                    Mean
                                   Mean
## 3rd Qu.: 68.00
                    3rd Qu.:2006
                                   3rd Qu.:16773459
                    Max. :2013
## Max. :459.00
                                   Max.
                                         :23954032
MB.aut[["Koonin"]] <- read_tsv('molbio.koonin.tsv')</pre>
## Parsed with column specification:
## cols(
##
    TC = col_integer(),
##
    PY = col_integer(),
##
    PM = col_integer(),
##
   AU = col_character()
## )
summary(MB.aut[["Koonin"]])
##
         TC
                           PΥ
                                          PM
                                                            AU
                          :1983
                                    Min. : 1317076
                                                       Length:500
## Min.
         :
               0.0
                     Min.
              21.0
  1st Qu.:
                     1st Qu.:1996
                                    1st Qu.: 8796420
                                                       Class :character
##
## Median:
              58.0
                     Median:2001
                                    Median :11446540
                                                       Mode :character
## Mean : 135.7
                     Mean
                           :2001
                                    Mean
                                          :12538060
## 3rd Qu.: 129.5
                     3rd Qu.:2006
                                    3rd Qu.:16902967
## Max.
         :11197.0
                     Max.
                            :2013
                                    Max. :24012761
MB.aut[["Sali"]] <- read_tsv('molbio.sali.tsv')</pre>
## Parsed with column specification:
## cols(
##
    TC = col integer(),
    PY = col_integer(),
##
##
    PM = col_integer(),
##
    AU = col_character()
## )
summary(MB.aut[["Sali"]])
                          PΥ
                                         PM
                                                           AU
##
         TC
  Min.
         :
              0.0
                    Min.
                           :1970
                                   Min.
                                              72956
                                                      Length: 279
## 1st Qu.: 13.0
                    1st Qu.:1999
                                   1st Qu.:10601956
                                                      Class : character
                    Median:2006
## Median : 37.0
                                   Median :16507877
                                                      Mode : character
## Mean : 100.7
                    Mean :2004
                                   Mean
                                         :15180335
## 3rd Qu.: 90.5
                    3rd Qu.:2010
                                   3rd Qu.:20506463
## Max.
         :5854.0
                    Max. :2013
                                   Max.
                                          :24197012
```

```
MB.aut[["Sanchez"]] <- read_tsv('molbio.sanchez.tsv')</pre>
## Parsed with column specification:
## cols(
##
     TC = col_integer(),
    PY = col_integer(),
    PM = col_integer(),
##
##
    AU = col_character()
## )
summary(MB.aut[["Sanchez"]])
##
          TC
                           PΥ
                                         PM
                                                            AU
## Min.
                                   Min.
         : 0.00
                           :1992
                                         : 1281090
                                                       Length: 174
                    Min.
## 1st Qu.: 13.00
                     1st Qu.:1997
                                   1st Qu.: 9504809
                                                       Class : character
## Median : 28.00
                     Median :2001
                                   Median :11452661
                                                       Mode : character
## Mean
         : 65.26
                    Mean
                           :2002
                                   Mean
                                           :13235713
## 3rd Qu.: 75.75
                     3rd Qu.:2007
                                    3rd Qu.:17310662
## Max.
          :503.00
                           :2013
                                           :23954032
                    Max.
                                   Max.
MB.aut[["Skolnick"]] <- read_tsv('molbio.skolnick.tsv')</pre>
## Parsed with column specification:
## cols(
##
     TC = col_integer(),
    PY = col_integer(),
##
    PM = col_integer(),
    AU = col_character()
##
## )
summary(MB.aut[["Skolnick"]])
          TC
                         PΥ
                                        PM
                                                           AU
##
## Min.
         : 0.0
                  Min.
                          :1985
                                  Min.
                                         : 1293893
                                                     Length: 203
## 1st Qu.: 12.5
                   1st Qu.:1997
                                  1st Qu.: 9468208
                                                     Class : character
## Median : 31.0 Median :2003
                                  Median :12609858
                                                     Mode :character
## Mean : 50.1
                                  Mean :13361527
                   Mean :2002
## 3rd Qu.: 57.5
                   3rd Qu.:2008
                                  3rd Qu.:18169078
         :586.0 Max.
                          :2013
                                         :24204237
## Max.
                                  Max.
MB.aut[["Uversky"]] <- read_tsv('molbio.uversky.tsv')</pre>
## Parsed with column specification:
## cols(
     TC = col_integer(),
##
##
    PY = col_integer(),
   PM = col integer(),
##
    AU = col_character()
## )
```

summary(MB.aut[["Uversky"]])

```
##
           TC
                             PΥ
                                              PM
                                                                  AU
##
              0.00
            :
                              :1990
                                               : 1287658
                                                            Length:301
                       Min.
                                       Min.
    1st Qu.: 11.00
                       1st Qu.:2003
                                       1st Qu.:12614167
                                                            Class : character
    Median : 29.00
##
                       Median:2007
                                       Median :17578581
                                                            Mode
                                                                  :character
            : 72.36
##
    Mean
                       Mean
                               :2006
                                       Mean
                                               :16895343
    3rd Qu.: 73.00
                       3rd Qu.:2010
                                       3rd Qu.:20889377
##
##
    Max.
            :983.00
                               :2013
                                       Max.
                                               :24072065
                       Max.
```

Article set size comparisons

Neuroscience has 1 database article per 546 publications. Molecular Biology has 1 such article per 212 publications. Therefore, and after adjusting for the absolute sizes of the existing literature in each field, this indicates that there are more than two-and-a-half (2.57) as many database publications in Molecular Biology (incl. Life Science, excl. Neuroscience) as there are in Neuroscience.

Field-specific citation distributions

Article citation distributions

The earliest model for discrete citation count per article was the log-normal distribution (Shockley 1957). Historically, citation counts have been also fitted to power law distributions⁴, such as Zipf's law⁵, and, in particular, Pareto's law⁶, for example in (Solla Price 1965) or (Redner 1998). However, citation counts only exhibit power-law behavior on the most cited articles that have accumulated unusually large numbers of citations. Therefore, a number of other distributions have been suggested, including stretched- and q-exponential distributions (Wallace, Larivière, and Gingras 2009). The only fits that has been reported with statistically significant goodness-of-fit tests over the entire range of citation counts (i.e., $[0, \infty)$) to our best knowledge, however, are log-normal distributions (Stringer, Sales-Pardo, and Nunes Amaral 2008); There, it has been shown that a citation distribution is log-normal if the article set is restricted to a single year and journal. Nonetheless, as stated by Stringer, Sales-Pardo, and Amaral (2010), joining several independent log-normal distributions can result in a distribution that approaches power-law behavior, at least for the subset of highly cited articles. However, for the issues being addressed here, establishing the exact, underlying distribution is not particularly relevant: By relying on the nonparametric, distribution-free (Mann-Whitney aka. Wilcoxon) rank-sum test, we refrain from providing a conclusive answer to this issue.

Citation count comparisons

The most important potential bias when comparing citation count distributions is the underlying distribution of publication years, because older publications are more likely to have accrued more citations simply due to age. Therefore, the number of random articles per year should be exactly the same number of articles as that of the data articles. Note, however, that we decided to not provide perfect matches for the early years before 1990, as this only affects three articles in MB and 18 in NS and therefore has a negligible effect. In

 $^{^4}y \sim x^{-\alpha}$ where x here would be the citation count and y an article's cumulative probability of achieving at least less than that number of citations (i.e., y=1 at x=1, because any article will have at least zero citations); Therefore, it is a CDF where α is known as the power law slope.

 $^{^5}y \sim r^{-\beta}$ with y being an article's citation count and r the article's rank (i.e., order wrt. an article's number of citations) with any $\beta > 0$ that usually is close to unity.

 $^{^6}y \sim x^{\kappa}$ with y being the proportion of articles with a citation count $\geq x$; This complementary CDF that can be associated to the power law by setting $\alpha = 1 + \kappa$.

addition, for NS we choose random articles from a pool where most are from the same two years when most of those 18 data articles were published (i.e., 1974-5); For MB, we select three random articles over the entire relevant period (1966-89). Histograms of the number of data publications per year in each field, covering the statistically relevant years after 1989, are shown in Figures 1 and 2.

```
NS.rnd = SampleYears(NS.data, NS.rnd, 1990)

#CompareYears(NS.data$PY, NS.rnd$PY)

PlotYears(NS.data$PY[NS.data$PY>1988])
```

```
MB.rnd = SampleYears(MB.data, MB.rnd, 1990)

#CompareYears(MB.data$PY, MB.rnd$PY, title="Molecular Biology")

PlotYears(MB.data$PY[MB.data$PY>1988], title="Molecular Biology")
```

The random sampling procedure shown above produces an equally-sized random article set with an equal background distribution of years as the data article set.

Note that the mean is a poor choice to describe the average of a set of citation counts, because the true mean is not the population mean for a non-normal, highly skewed citation distribution with extreme values - e.g. (Wang, Song, and Barabási 2013). Therefore, instead, we use the *median* to describe the average citation counts of our sets. For NS, we observe medians of 8 and 6 for the data and random article citation sets, respectively. For MB, we observe medians of 12 and 11 for the data and random article citation sets, respectively. In other words, the median citation count of (average) data articles is one to two counts higher than that of average (random) articles in their field. (While we never encountered this phenomena, note that

Figure 1: Neuroscience data/random articles per year.

Figure 2: Molecular Biology data/random articles per year.

if upon running this script the quoted differences in medians (2 for NS, 1 for MB) might not add up, an exceptional sample might have been drawn and simply re-running this script should resolve the matter.)

Next, we establish if the observed increase in median article citation counts of the data over the random articles is statistically significant. We apply a (Wilcoxon) one-sided rank-sum test to determine the significance levels, both for Neuroscience and Molecular Biology.

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: NS.data$TC and NS.rnd$TC
## W = 11427000, p-value = 1.218e-14
## alternative hypothesis: true location shift is greater than 0

wilcox.test(MB.data$TC, MB.rnd$TC, alternative="greater")

##
## Wilcoxon rank sum test with continuity correction
##
## data: MB.data$TC and MB.rnd$TC
## W = 489150000, p-value < 2.2e-16
## alternative hypothesis: true location shift is greater than 0</pre>
```

To quantify the differences in medians in absolute terms, we measure the cumulative probability difference Δp at the median number of citations for random articles in both fields. This establishes how much more likely it is for data articles to receive the same number of citations as the field's overall average (Figures 3 and 4).

```
PlotLeftTail <- function (data.cites, rnd.cites, x.max=25) {
  # prepare the datasets
  data.ecdf = ecdf(data.cites)
  rnd.ecdf = ecdf(rnd.cites)
  med.cites = median(rnd.cites)
  # plot both CDFs
  plot(0:x.max, data.ecdf(0:x.max),
       type="1", col=2, frame.plot=F,
       xlab="Citations", ylab="CDF", ylim=c(0,1), cex.axis=.75)
  lines(0:x.max, rnd.ecdf(0:x.max), col=4)
  # describe p of data and rnd cites at the median of rnd cites
  p.data = data.ecdf(med.cites)
  p.rnd = rnd.ecdf(med.cites)
  lines(c(med.cites, med.cites),
        c(data.ecdf(med.cites), rnd.ecdf(med.cites)))
  text(med.cites + 5, y=rnd.ecdf(med.cites) - .2, cex=.75, label=bquote(
    P[rnd] (C == .(med.cites)) <= .(signif(p.rnd, digits=2))</pre>
  text(med.cites + 5, y=rnd.ecdf(med.cites) - .35, cex=.75, label=bquote(
    P[data] (C == .(med.cites)) <= .(signif(p.data, digits=2))</pre>
  ))
}
```


Figure 3: Neuroscience CDF, left tail. Red: for data article citations. Blue: for random article citations.

```
PlotLeftTail(MB.data$TC, MB.rnd$TC, 40)
```

Second, we compare the citation difference ΔC at p=0.1 (i.e., in the last decile) in the complementary CDF. This quantifies the number of additional citations the top 10% of data articles typically receive when compared to the random population sample (Figures 5 and 6).

```
PlotHeavyTail <- function(data.cites, rnd.cites) {</pre>
  # prepare the datasets
  x.data = sort(unique(data.cites))
  x.rnd = sort(unique(rnd.cites))
  data.ecdf = ecdf(data.cites)
  rnd.ecdf = ecdf(rnd.cites)
  # plot both complementary CDFs (1 - CDF)
  # NB: log-log plot, so don't show the zero citation probability
  # NB: draws a cleaner, more legible Y-axis
  plot(x.data[x.data>0], 1.0 - data.ecdf(x.data[x.data<max(x.data)]),</pre>
       log="xy", ty="l", col=2, frame.plot=F,
       xlab="Citations", ylab="1 - CDF", yaxt="n", cex.axis=0.75)
  lines(x.rnd[x.rnd>0], 1.0 - rnd.ecdf(x.rnd[x.rnd<max(x.rnd)]), col=4)</pre>
  marks = c(1.0, 0.1, 0.01, 0.001, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9)
  marks = marks[marks > 1-data.ecdf(max(x.data) - 1)]
  axis(2, at=marks, labels=marks, cex.axis=.75)
  # describe C at p == 0.9 and the number of rnd cites at that p
  delta.C = abs(quantile(data.ecdf, .9) - quantile(rnd.ecdf, .9))
  C.rnd = quantile(rnd.ecdf, .9)
  C.data = quantile(data.ecdf, .9)
```


Figure 4: Molecular Biology CDF, left tail. Red: for data article citations. Blue: for random article citations.

```
lines(c(quantile(data.ecdf, .9), quantile(rnd.ecdf, .9)), c(.1, .1))
text(10, y=0.02, cex=.75, label=bquote(P[data] (C > .(C.data)) == 0.1))
text(10, y=0.002, cex=.75, label=bquote(P[rnd] (C > .(C.rnd)) == 0.1))
}
PlotHeavyTail(NS.data$TC, NS.rnd$TC)
PlotHeavyTail(MB.data$TC, MB.rnd$TC)
```

Author-specific citation distributions

A data article citation index

One common way of ranking author citation impact today is the h-index, introduced by Hirsch (2005). However, as the data article sets are a limited selection of an author's works, the h-index would penalize highly cited authors who published data articles only once (their h-index would be 1) or a few times. In (2008), Bornmann showed that other index strategies can be more apt at predicting peer assessments than the h-index. Furthermore, Yong (2014) claims that the h-index does not constitute a significantly more accurate assessment than the total number of citations.

Therefore, summing up the number of citations for an author over all her publications seems more fair for the purpose of establishing an index for ranking the most prolific data-publishing authors. Nonetheless, two problems occur if we were to use the raw sum of citations.

1. A senior author who published her papers long ago is more likely to have accumulated more citations than a young scientist. However, the possible fact that a senior's data articles are still being cited should be factored in for a fair global ranking.

Figure 5: Complementary CDF showing the heavy tail of Neuroscience citations. Red: data article citations. Blue: random article citations.

Figure 6: Complementary CDF showing the heavy tail of Molecular Biology citations. Red: data articles Blue: random articles.

2. Second, being the author of just one top-cited article could result in a larger sum (index rank) than being the author of many averagely cited articles due to the very heavy tails of the citation distributions. This implies that all co-authors of the most cited article(s) dominate the ranking.

Our intent therefore is to introduce a ranking that can mitigate these effects.

First, the datasets need to be transformed to calculate an author-centric citation index. The datasets contain article citations, i.e., the citation data are provided on a per-article basis. To extract the individual author citations from the datasets, we create an aggregate function to determine each author's personal set of articles.

By summing up the citation counts of each neuroscientist's data articles, we get the following top-ten ranking:

```
NS.split <- data.frame(NS.data)
NS.split$AU <- SplitAuthors(NS.split$AU)
NS.agg <- AggregateCitations(NS.split)
head(NS.agg[with(NS.agg, order(-Citations)),], 10)</pre>
```

##		Author	${\tt Citations}$
##	19999	Williams, Brian A	2670
##	11854	McCue, Kenneth	2619
##	12642	Mortazavi, Ali	2619
##	16098	Schaeffer, Lorian	2619
##	20124	Wold, Barbara	2619
##	17121	Smith, Stephen M	2333
##	1161	Beckmann, Christian F	2255
##	1188	Behrens, Timothy E J	2124
##	8357	Jenkinson, Mark	2069
##	20226	Woolrich, Mark W	2062

Similarly, in Molecular Biology, we get:

```
##
                 Author Citations
## 1530
         Altschul, S F
                            78500
## 49886
           Lipman, D J
                            76777
## 56742
             Miller, W
                            75933
## 59379
            Myers, E W
                            45555
## 96903
                            44075
              Zhang, J
## 28149
               Gish, W
                            41236
## 52371
           Madden, T L
                            38032
## 74701 Schaffer, A A
                            37551
## 97347
              Zhang, Z
                            37218
## 89922
               Wang, J
                            20384
```

The two top data articles in Molecular Biology are the publications of BLAST and PSI-BLAST by Altschul et al., each having approximately 40 thousand citations. If those two papers are removed from the set (as in the next ranking below), the ranking changes substantially. As can be seen below, the nine co-authors⁷ of those two most cited data papers occupied all the top ranks in the ranking shown above:

```
# exclude the BLAST and PSI-BLAST papers:
MB.agg <- AggregateCitations(MB.split[3:nrow(MB.split),])
head(MB.agg[with(MB.agg, order(-Citations)),], 10)</pre>
```

```
##
               Author Citations
## 89922
                          20384
             Wang, J
## 43759 Koonin, E V
                          19161
## 6855
           Birney, E
                          16968
          Hubbard, T
## 36082
                          16905
## 21306
           Durbin, R
                          16372
## 369
          Adams, M D
                          16098
## 2490
          Aravind, L
                          14857
## 6041
         Berman, H M
                          14499
## 7976
             Bork, P
                          14405
## 32603 Haussler, D
                          14282
```

It should be noted that there is no perceivable reason to exclude these two papers from the list of database papers. Rather, this Gedankenspiel should show how brittle a pure "sum of citations" approach would be with regard to minor fluctuations in the sample.

One problem that can be observed - and about which little can be done here - is the author first and middle name abbreviation problem. For example, most of "P. Bork's" and "Peer Bork's" or "A. Bairoch's" and "Amos Bairoch's" counts probably should be aggregated. But it is hard to judge if there is no other scientist with the same initials, and it is impossible to fully separate those assignments based on the data we can get from Thomson Reuter's alone.

To partially address this matter, we abbreviate all first and middle names using two regular expressions, thereby effectively normalizing all names. This choice implies that authors with many publications are better represented in our results, because their index value is no longer divided between their abbreviated and full name. It comes at the cost of sacrificing the ability to reliably find the correct index value of mid- and low-ranking authors with their full name if their (first and middle name) initials happen to coincide with a higher-ranked author. While top authors therefore will have artificially increased counts from coinciding names, this increase can be expected to be proportionally smaller due to the power-law behavior of citation counts. A remaining problem is top authors whose names coincide or if they have very common names. However, as this index only considers data authors, the absolute number of possible name collisions is proportionally lower than for the set of names from the entire scientific bibliome.

To dampen the dominant effect of the most cited papers, it is more appropriate to calculate a sum of logs instead of the sum (Radev et al. 2009) to establish a **data article citation index** (*DAC*-index). This can be further justified by the fact that the log-normal is a valid distribution model for citation counts, as discussed earlier.

⁷That is: Altschul, S F; Gish, W; Miller, W; Myers, E W; Lipman, D J, Altschul, S F; Madden, T L; Schaffer, A A; Zhang, J; Zhang, Z; Miller, W; Lipman, D J

$$D = \log \prod n_i = \sum \log n_i$$

Where n_i is the citation count for data article i by the author being indexed. Note that any base will do for the logarithm, as it does not influence the relative ordering of authors.

One effect of this log-based index is that it gives authors of many medium-impact papers an edge over authors only appearing on the one or two most cited papers. Another good reason for using a sum of logs is that it is more favorable towards authors that might be working in a sub-discipline that gains relatively less citations (e.g., if she is working on some rare model organism). A third effect is that an author with many papers with only very few citations each can accumulate citation impact, too. While that last issue might not immediately appear as desired, the actual work required to create that many publications should be acknowledged to some extent; Not the least because paradigm-changing work can sometimes go unnoticed for years and even decades without picking up a justified number of citations (Wang, Song, and Barabási 2013). Finally, in comparison to more elaborate procedures, using the sum of logs is a simple calculation and therefore follows the principle of Occam's razor.

Returning to the two problems stated in the beginning of this section, the DAC-index solves both: A senior scientist still can more easily accumulate more citation impact, but due to log-scaling and the fact that newer articles generally receive more citations, it is easier for young scientists to catch up. And only being a co-author of the top cited article(s) without any further data publications is no longer sufficient to dominate the ranking.

This leads to the following, final DAC-index ranking for Neuroscience:

```
NS.agg <- data.frame(AU=I(NS.split$AU), TC=log(NS.split$TC, 2), PY=NS.split$PY)
NS.agg$AU <- NormalizeFirstNames(NS.agg$AU)
NS.agg <- AggregateCitations(NS.agg)
NS.ranking <- NS.agg[with(NS.agg, order(-Citations)),]
head(NS.ranking, 20)</pre>
```

```
##
                    Author Citations
## 17165
                Toga, A W 113.12707
## 10692
              Marmarou, A 108.01908
## 11904
              Murray, G D
                            76.32372
              Maas, A I R
## 10344
                            68.02451
## 16362
          Steverberg, E W
                            67.02451
## 10219
                            66.45297
                     Lu, J
## 3952
              DeVivo, M J
                            62.37555
               Butcher, I
## 2167
                            60.28305
## 11037
              McHugh, G S
                            60.28305
## 17727
           Van Essen, D C
                            57.99922
## 10717
            Marshall, L F
                            55.54335
            Thompson, P M
## 17066
                            53.89455
             Foulkes, M A
## 5194
                            50.69958
## 6006
                Gordon, E
                            47.96464
## 11961
                Nagase, T
                            47.43339
## 18642
            Williams, R W
                            47.33676
## 4037
              Diener, H C
                            46.86433
## 11543
                Mohr, J P
                            46.40805
## 8976
                Kotter, R
                            44.47459
## 11916 Mushkudiani, N A
                            43.89941
```

Applying the same methodology to Molecular Biology authors give the following DAC-index ranking:

```
##
                    Author Citations
                Bairoch, A 685.2188
## 3426
               Koonin, E V
                            365.7870
## 37179
## 18379
               Dunker, A K 307.6099
## 18483
                 Durbin, R
                            305.4136
## 61863
                   Sali, A
                            271.6663
## 66334
               Skolnick, J
                            253.7186
## 29690 Hochstrasser, D F
                            235.2157
## 62123
              Sanchez, J C
                            229.1041
## 2154
                Appel, R D
                            226.7728
## 73119
              Uversky, V N
                            222.6697
## 3461
                  Baker, D
                            213.0058
## 12233
                Chothia, C 208.2536
## 19007
              Eisenberg, D 198.0262
## 8661
                 Bucher, P
                            178.5349
## 40901
                 Levitt, M
                            174.9632
## 61374
             Rychlewski, L
                           173.0159
## 52054
              Obradovic, Z
                            170.4503
## 26038
              Gromiha, M M 168.5819
## 33474
                Jones, D T
                            165.3952
## 64955
                 Shen, H B
                            163.1558
```

The chosen cutoff of showing the top 20 ranks was made arbitrary.

Data author comparisons

Building on the DAC-index result, we establish if the data articles have an significantly stronger citation impact compared to the author's other articles. (Note that to ensure a fair comparison the selected articles are exclusively from the author's respective field (NS or MB), and do not include her articles from any other field.)

```
CompareAuthor <- function (all.articles, data, author.name) {</pre>
  # Extract the data articles from an author's article set
  data.articles = semi_join(all.articles, data, by="PM")
  other.articles = anti_join(all.articles, data, by="PM")
  # Apply a one-sided rank-sum test and report
  test.result = wilcox.test(data.articles$TC, other.articles$TC,
                            alternative="greater", exact=F)
  cat(author.name, "\n")
  cat("median citation counts other =", median(other.articles$TC),
      "from", length(other.articles$TC), "articles\n")
  cat("median citation counts data =", median(data.articles$TC),
      "from", length(data.articles$TC), "articles\n")
  cat("one-sided rank-sum p-value
                                    =", test.result$p.value, "\n")
  # Visualize the two distributions as side-by-side box-plots
  # NB: has to be calculated before modifying the Os!
  mean.other = mean(other.articles$TC)
  mean.data = mean(data.articles$TC)
  {\it \# Modify Os to allow for a log-scaled boxplot with zero-citations}
  other.articles$TC[other.articles$TC==0] = 0.1
  data.articles$TC[data.articles$TC==0] = 0.1
  boxplot(other.articles$TC, data.articles$TC,
```

```
names=c("Other", "Data"), notch=F, log="y", las=2,
          ylab="Citations",
          yaxt="n", cex.axis=0.7)
  # Add x-mark of the mean of the distributions
  points(1, mean.other, pch=4)
  points(2, mean.data, pch=4)
  # Add author name as title, with test significance stars
  stars = symnum(test.result$p.value, corr=F,
                 cutpoints = c(0, .001, .01, .05, .1, 1),
                 symbols = c("***","**","*","."," "))
  title(paste0(author.name, stars[[1]]))
  # Calculate and draw a clean citation count axis
  ymin = floor(log(min(data.articles$TC, other.articles$TC), 10))
  ymax = ceiling(log(max(all.articles$TC), 10))
  yseq = seq(ymin, ymax, length.out=6)
  ylabs = format(10^yseq, trim=T, scientific=F, digits=0, format="f")
  axis(2, at=10^yseq, labels=ylabs)
}
```

In Figures 7 and 8, the side-by-side box plots of each of the top ten authors in both fields are shown. Based on a one-sided Wilcoxon rank-sum test, we establish if the differences between their entire citation sets and "other" (non-data) citation count distributions are statistically significant. This is indicated by the asterisk/star notation of significance levels (*p < 0.05, **p < 0.01, ***p < 0.001) in the author names (titles). In other words, the data citation impact of authors that are "decorated with stars" is significantly stronger than their other, non-data article citation impact. The difference is quantified by the two medians below.

Neuroscience authors:

```
par(mfrow=c(2,5))
for (name in names(NS.aut)) {
   CompareAuthor(NS.aut[[name]], NS.data, name)
}
```

```
## Butcher
## median citation counts other = 18.5 from 16 articles
## median citation counts data = 79 from 10 articles
## one-sided rank-sum p-value = 0.002033657
## DeVivo
## median citation counts other = 24 from 84 articles
## median citation counts data = 56 from 15 articles
## one-sided rank-sum p-value = 0.02042069
## T.11
## median citation counts other = 14 from 171 articles
## median citation counts data = 79 from 10 articles
## one-sided rank-sum p-value = 0.0001250827
## Maas
## median citation counts other = 18.5 from 74 articles
## median citation counts data = 79 from 12 articles
## one-sided rank-sum p-value = 0.0008404096
```

```
## McHugh
## median citation counts other = 25 from 11 articles
## median citation counts data = 79 from 10 articles
## one-sided rank-sum p-value = 0.01885458
## Marmarou
## median citation counts other = 26 from 199 articles
## median citation counts data = 80 from 17 articles
## one-sided rank-sum p-value = 0.0001465897
## Murray
## median citation counts other = 33 from 86 articles
## median citation counts data = 81 from 13 articles
## one-sided rank-sum p-value = 0.01556908
## Steverb.
## median citation counts other = 19.5 from 90 articles
## median citation counts data = 81 from 11 articles
## one-sided rank-sum p-value = 4.62999e-05
## Toga
## median citation counts other = 29 from 522 articles
## median citation counts data = 21 from 31 articles
## one-sided rank-sum p-value = 0.9149317
## Van Essen
## median citation counts other = 65 from 130 articles
## median citation counts data = 67 from 10 articles
## one-sided rank-sum p-value = 0.5817354
par(mfrow=c(1,1))
Molecular Biology authors:
par(mfrow=c(2,5))
for (name in names(MB.aut)) {
  CompareAuthor(MB.aut[[name]], MB.data, name)
}
## Appel
## median citation counts other = 32 from 34 articles
## median citation counts data = 33.5 from 44 articles
## one-sided rank-sum p-value = 0.2386653
## Bairoch
## median citation counts other = 52 from 47 articles
## median citation counts data = 88.5 from 110 articles
## one-sided rank-sum p-value = 0.01216537
## Dunker
## median citation counts other = 30.5 from 124 articles
## median citation counts data = 54.5 from 54 articles
## one-sided rank-sum p-value = 0.001519785
```


Figure 7: Box-and-whisker plots of data vs. other (non-data) citation count distributions for the top-ten Neuroscience data authors. Title asterisks: rank-sum test significance levels (*p<0.05; **p<0.01; ***p<0.001). Additional x-mark: sample mean. Whisker sizes: 1.5 interquartile ranges.

```
## one-sided rank-sum p-value
                                = 0.008748146
## Hochstr.
## median citation counts other = 22.5 from 146 articles
## median citation counts data = 55 from 46 articles
## one-sided rank-sum p-value
                                = 0.001811152
## Koonin
## median citation counts other = 55 from 444 articles
## median citation counts data = 89.5 from 56 articles
## one-sided rank-sum p-value = 0.0009783556
## Sali
## median citation counts other = 35 from 227 articles
## median citation counts data = 42 from 52 articles
## one-sided rank-sum p-value
                                = 0.1638974
## Sanchez
## median citation counts other = 24 from 133 articles
## median citation counts data = 59 from 41 articles
## one-sided rank-sum p-value
                                = 0.001213024
## Skolnick
## median citation counts other = 28 from 154 articles
## median citation counts data = 42 from 49 articles
## one-sided rank-sum p-value
                                = 0.01283627
## Uversky
## median citation counts other = 26.5 from 258 articles
## median citation counts data = 47 from 43 articles
## one-sided rank-sum p-value
                              = 0.02428859
par(mfrow=c(1,1))
```

Note that it might seem appealing to ask if data articles play a significant role in an author's overall citation impact. However, that is a poorly formulated hypothesis, as it depends more on the relative fraction of data articles than on the specific citation counts. To put it in plain words, adding a few outliers with otherwise mostly similar data should not have a significant impact on the median. In fact, only Bairoch's overall citation impact significantly increases because of his data articles, while all other authors' does not (data not shown). Which can be easily predicted from the fact that only Bairoch has more data articles than other, non-data articles (and with McHugh being the obvious, second-best candidate).

An online DAC-index

Durbin

median citation counts other = 78.5 from 64 articles
median citation counts data = 148 from 44 articles

As the citation counts from Thomson Reuters ISI WoK cannot be accessed programmatically, the data had to be downloaded manually in batches of 500 citations. Therefore, it only was possible to establish a static DAC-index for the purpose of this publication. In the future, if Thomson Reuters were to provide open (web-) access to their citation data for public, scientific purposes, it would be possible to generate an online, continuously up-to-date version of this index.

Figure 8: Box-and-whisker plots of data vs. other (non-data) citation count distributions for the top-ten Molecular Biology data authors. Title asterisks: rank-sum test significance levels (*p<0.05; **p<0.01; ***p<0.001). Additional x-mark: sample mean. Whisker sizes: 1.5 interquartile ranges.

References

Bornmann, Lutz, Rüdiger Mutz, and Hans-Dieter Daniel. 2008. "Are There Better Indices for Evaluation Purposes Than the H Index? A Comparison of Nine Different Variants of the H Index Using Data from Biomedicine." Journal of the American Society for Information Science and Technology 59 (5): 830–37.

Hirsch, Jorge E. 2005. "An Index to Quantify an Individual's Scientific Research Output." Proceedings of the National Academy of Sciences of the United States of America 102 (46): 16569–72.

Radev, Dragomir R., Mark Thomas Joseph, Bryan Gibson, and Pradeep Muthukrishnan. 2009. "A Bibliometric and Network Analysis of the Field of Computational Linguistics." *Journal of the American Society for Information Science and Technology* 1001: 48109–41092.

Redner, S. 1998. "How Popular Is Your Paper? An Empirical Study of the Citation Distribution." The European Physical Journal B - Condensed Matter and Complex Systems 4 (2): 131–34.

Shockley, William. 1957. "On the Statistics of Individual Variations of Productivity in Research Laboratories." *Proceedings of the IRE* 45 (3): 279–90.

Solla Price, Derek J. de. 1965. "Networks of Scientific Papers." Science 149 (3683): 510-15.

Stringer, Michael J., Marta Sales-Pardo, and Luís A. Nunes Amaral. 2010. "Statistical Validation of a Global Model for the Distribution of the Ultimate Number of Citations Accrued by Papers Published in a Scientific Journal." Journal of the American Society for Information Science and Technology 61 (7): 1377–85.

Stringer, Michael J., Marta Sales-Pardo, and Luís A. Nunes Amaral. 2008. "Effectiveness of Journal Ranking Schemes as a Tool for Locating Information." *PLoS ONE* 3 (2): e1683.

Wallace, Matthew L., Vincent Larivière, and Yves Gingras. 2009. "Modeling a Century of Citation Distributions." *Journal of Informetrics* 3 (4): 296–303.

Wang, Dashun, Chaoming Song, and Albert-László Barabási. 2013. "Quantifying Long-Term Scientific Impact." Science 342 (6154): 127–32.

Yong, Alexander. 2014. "A Critique of Hirsch's Citation Index: A Combinatorial Fermi Problem." Notices of the American Mathematical Society 61 (9): 1040.